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Abstract

The first Wind Forecast Improvement Project (WFIP) was a DOE and NOAA‐funded

2‐year‐long observational, data assimilation, and modeling study with a 1‐year‐long

field campaign aimed at demonstrating improvements in the accuracy of wind

forecasts generated by the assimilation of additional observations for wind energy

applications. In this paper, we present the results of applying a RampTool and Metric

(RT&M), developed during WFIP, to measure the skill of the 13‐km grid spacing

National Oceanic and Atmospheric Administration/Earth System Research Labora-

tory (NOAA/ESRL) Rapid Refresh (RAP) model at forecasting wind ramp events. To

measure the impact on model skill generated by the additional observations,

controlled data‐denial RAP simulations were run for six separate 7 to 12‐day periods

(for a total of 55 days) over different seasons.

The RT&M identifies ramp events in the time series of observed and forecast power,

matches in time each forecast ramp event with the most appropriate observed ramp

event, and computes the skill score of the forecast model penalizing both timing and

amplitude errors. Because no unique definition of a ramp event exists (in terms of a

single threshold of change in power over a single time duration), the RT&M computes

integrated skill over a range of power change (Δp) and time period (Δt) values.

A statistically significant improvement of the ramp event forecast skill is found

through the assimilation of the special WFIP data in two different study areas, and

variations in model skill between up‐ramp versus down‐ramp events are found.
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1 | INTRODUCTION

Grid operators responsible for making decisions on what kind of power generation to use to keep the grid in balance (conventional versus weather

dependent, such as wind or solar) need a reliable numerical weather prediction (NWP) model to ensure grid stability. While conventional power is

nearly always available, weather‐dependent power can vary greatly over short periods of time. Wind speed variability is furthermore amplified

through the wind turbine's power curve, which translates the wind speed into power production. Wind power production can feature large excur-

sions, known as ramp events that can be very rapid as wind power is proportional to the cube of the wind speed in the middle portion of the tur-

bine's power curve. Ramp events can be a challenge for grid operators as they must continuously keep power production in nearly exact balance

with power demand. If large, sudden, and unanticipated changes in wind power production occur, the grid operator may be forced to bring online

(or “spin up”) other conventional energy generation units. Ramps that are not forecasted accurately (both in terms of amplitude and timing) will

require large and sudden changes in output from conventional generation units, which can ultimately increase the costs of power generation

and diminish the appeal of weather‐dependent resources. However, evaluating the exact economic savings from improved short‐term forecasts

is challenging due to the complicated issue of applying a monetary value to grid reliability. In one of the few studies to estimate savings from

short‐term forecasts, Hodge et al1 evaluated the cost savings from improving ultra‐short‐term forecasts (less than 40 minutes) on the California

Independent System Operator (CAISO) system and found that for a future scenario with 25% wind energy penetration, a 50% forecast skill

improvement resulted in an annual savings of $146 million.

To measure the skill of NWP models at forecasting ramp events, we developed a RampTool and Metric (RT&M).1 The RT&M is publicly avail-

able at https://www.esrl.noaa.gov/psd/products/ramp_tool/.

A description of the RT&M can be found in Bianco et al,2 in which the tool was tested on data collected over a period of 9 days from a set of

four 80‐meter‐tall towers and forecasts at the same locations from the 13‐km grid spacing National Oceanic and Atmospheric

Administration/Earth System Research Laboratory (NOAA/ESRL) Rapid Refresh Numerical (RAP) model, during the first WFIP. WFIP took place

in the United States Great Plains from September 2011 to September 2012.3-6 While the primary goal of WFIP was to test the impact of addi-

tional observations on the forecast skill of turbine‐height winds, in this study, we focus on the skill of forecasting ramp events.

This paper is organized as follows: Section 2 presents the dataset used in this study; Section 3 gives basic details on the RT&M; Section 4

presents the results of our analysis, separately for the two main geographical locations of the WFIP campaign, and then assessing what types

of observations are most useful to the data assimilation system to improve the skill of the models at forecasting ramp events; finally, Section 5

provides a summary and discussion.
2 | DATASET

The WFIP 1‐year‐long field campaign took place in two high wind energy resource areas of the United States, the upper Great Plains (hereafter

referred to as North Study Area, NSA) and Texas (hereafter referred to as South Study Area, SSA). The additional observations in the NSA

consisted of nine wind profiling radars (WPRs, seven of which were 915 MHz, and two of which were 449 MHz), five sodars, and 134 instru-

mented tall towers; while for the SSA, the additional observations consisted of three 915‐MHz WPRs, seven sodars, and 49 instrumented tall

towers.6 Hourly averaged winds and RASS temperatures were provided by the WPRs, while the sodars provided 10‐minute averaged data, and

the towers provided 10‐minute averaged wind speeds and directions at a height between 55 and 90 m. All three data sets were visually quality

controlled to eliminate outliers before assimilation.6

The primary goal of WFIP was to improve short‐term forecasts, so NOAA's RAP model was used in this study, which also supports the short‐

term forecasting of severe weather events for NOAA's National Weather Service. The RAP has 13‐km grid spacing and was re‐initialized every

hour and run out to 15 hours, with model output available every 15 minutes, allowing us to analyze rapidly evolving ramp events. The version

of the RAP model used in WFIP employs the Advanced Research version of the Weather Research and Forecast model (WRF‐ARW)7 version

3.4.1 as the forecast component, and a 3D variational data assimilation technique with a Gridpoint Statistical Interpolation (GSI) analysis system8

each hour assimilating virtually every meteorological observation that is available, including satellite, aircraft, radiosondes, surface mesonet, and

WPRs, among others. So, while the number of new instruments deployed for WFIP was relatively small, they were concentrated in the NSA

and SSA which comprised a small part of the overall model domain.6

To measure the impact of the additional observations on forecast skill, six data denial periods were selected (16‐25 September 2011; 13‐20

October 2011; 30 November‐6 December 2011; 7‐15 January 2012; 14‐25 April 2012; 9‐17 June 2012), ranging in length from 7 to 12 days,

for a total of 55 days. These periods were selected to represent all four seasons and to contain a large number of high‐amplitude ramp events.

For the data denial periods, RAP simulations were run first assimilating only the conventional observations (Control Runs); subsequent runs

assimilated both the conventional observations and the additional WFIP observations (Experimental Runs). A previous analysis of these model

simulations found that the relative percent improvement in model forecast skill of the Experimental Run's RMSE and coefficient of determination

of turbine hub‐height winds (at forecast hour 1) was 6%, for both the NSA and SSA, decreasing at longer forecast horizons.6 A later, second analysis

investigated the impact of different components of theWFIP observing system, by separating the instrumentation into two groups, remote sensors

https://www.esrl.noaa.gov/psd/products/ramp_tool/
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(WPRs and sodars) and in situ (tall tower vector winds and nacelle anemometer wind speeds), and assimilating them each independently for a subset

of two of the six data denial periods (13‐20 October 2011 and 7‐15 January 2012).9 That analysis demonstrated that the large numbers of in situ

observations had a significant initial impact that diminished rapidly after only several hours, while the less numerous remote sensing instruments

had a smaller initial impact that improved the forecasts for a longer time, due to their observing a deeper layer of the atmosphere.

Here, we first use all six data denial runs, following the all or only standard observation assimilation approach, to measure the percentage

improvement of the model skill at forecasting ramp events. Second, we assess the data assimilation impact of the remote sensing data alone,

the in situ data alone, and for the two combined, using the 13 to 20 October 2011 and 7 to 15 January 2012 data denial periods. The data set

used for verification of this analysis includes the measurements collected by the tall meteorological towers (55‐90 m above ground level), as

we are interested in the ramps that happen at or near turbine hub‐height.

This selection leaves us with 97 towers in the North Study Area and 46 towers in the South Study Area. Only towers with more than 50% data

availability for a particular data denial period are considered in the rest of the analysis.
3 | THE RAMP TOOL AND METRICS

The first step of the RT&M is to generate equal‐length time series of model forecast and observational wind speed data. The RT&M provides two

possible approaches: the “stitching method” and the “independent forecast run method.” For the “stitching method,” a time series of model fore-

casts is created for each particular forecast horizon, and each of these is evaluated versus the corresponding observational time series. For exam-

ple, with an hourly updated model such as the RAP, the 6‐hour forecasts generated each hour are concatenated into a longer time series of hourly

values of all 6‐hour forecasts. For the “independent forecast run method,” the RT&M is applied to each independent forecast run over its full

length. The first method allows for forecast skill to be derived as a function of forecast hour, and it assumes that no artificial ramps are generated

by concatenating different model runs. The second method avoids the possibility of generating artificial ramps through combining different model

runs but has the disadvantage that for each model forecast the beginning and ending forecast hours will suffer from truncated ramps that poten-

tially begin before the start or end of the forecast cycle.2 This disadvantage is reduced for the “stitching method” as the concatenated time series

will be much longer and the impact of having truncated ramps at the beginning and end will be negligible. For this reason, we use the stitching

method to prepare the time series of model forecasts for each forecast horizon. Nevertheless, we tested the use of the “independent forecast

run method” on this data set and found consistent results with the “stitching method.”

Model data, output at 15‐minute intervals, are linearly interpolated to the tall tower 10‐minute time intervals. Both time series are then con-

verted into power using a standard International Electrotechnical Commission (IEC) class 2 turbine power curve.9,10 Model data that correspond to

periods of missing data in observations are disregarded in the analysis as well as observational data corresponding to periods of missing data in the

model.

Although ramps are often referred to as “a large change in power production over a short interval of time,” no commonly accepted definition of

a ramp event exists, nor are strict thresholds defining the “large change in power” and the “short interval of time” possible for all applications. Dif-

ferent threshold values might be more appropriate for different situations and different users. For this reason, the RT&M allows one to use a

matrix of possible ramp definitions, each for different changes in power (Δp) and over different intervals of time (Δt). In the standard setting,

threshold values for Δp are chosen to be 30%, 40%, 50%, 60%, and 70% of the rated normalized capacity, while threshold values for Δt are chosen

to be 30, 60, 120, and 180 minutes. Using these thresholds for Δp and Δt provides the possibility to investigate the behavior of a NWP model for

20 different ramp definitions. This standard setting can be changed according to the user needs.

For each of these 20 ramp definitions, the RT&M follows three basic steps2:

• First, it identifies ramp events in the time series of observed and modeled power data. Three different identification methods are used, the

“Fixed Time Interval Method,” the “Min‐Max Method,” and the “Explicit Derivative Method.” While the “Fixed Time Interval Method” only

measures the difference in power over a determined time window, the “Min‐Max Method” takes into account the maximum amplitude change

in power within that window, and the “Explicit Derivative Method” analyzes the value of a smoothed time derivative of the power over that

time window. A detailed description of these methods is presented in Bianco et al.2

• Second, the RT&M matches in time the observed ramp events with those predicted by the forecast model.

• Finally, it scores the ability of the model to forecast ramp events. The scoring metric accounts for both amplitude and timing (center point and

duration) errors in the forecast, allowing one to evaluate up‐ramp and down‐ramp events separately. The particular scoring rules that we used

are intended to reflect the perspective of a grid operator; however, the metric itself is flexible, and it could be easily modified by any user to

reflect the needs of other participants in the energy generation system. Each ramp event is assigned a score in the range from −1 to 1; a score

of 1 is assigned to an event when the forecasted ramp is identical to the observed, −1 when the forecasted ramp's characteristics match the

observed one's except for the type of the ramp (eg, an up‐ramp is forecasted when a down‐ramp occurred), and 0 when the event is

unmatched. The score can assume any value in the range from −1 to 1 according to the difference in change of power, duration, and time
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of occurrence between the forecasted ramp and the observed one. An average score is calculated for all events found for each ramp definition,

and the final score is the average across all ramp definitions. For more information on the scoring procedure, see Bianco et al.2

After this process is repeated for all ramp definitions, the NWP model is assigned a matrix of scores of the same dimension as the matrix of ramp

definitions. Finally, this matrix of scores will be averaged to provide a final value for the NWP model skill at forecasting ramp events. This process

can be repeated for all the forecast hours, to obtain the skill of the NWP model as a function of the forecast horizon.
4 | RESULTS
4.1 | North Study Area

Results averaged over the six data denial periods are presented in Figure 1 for the NSA. Skill was calculated using the three available ramp

identification methods (“Fixed Time Interval Method,” “Min‐Max Method,” and the “Explicit Derivative Method”), and because the results were

consistent between the methods, an average over the three identification methods is presented here and for the rest of our analysis. The upper

panel of Figure 1 shows the skill as a function of the forecast hour. The red line is used for the Experimental Runs (with additional observations),

and the blue line is used for the Control Runs (without additional observations). The middle panel of Figure 1 shows the percentage improvement

[100 × (skill_Experimental_Run − skill_Control_Run) / skill_Control_Run] as a function of the forecast hour. The lower panel in Figure 1 shows the

difference between the two lines of the upper panel; this difference is statistically significant through forecast hour 12 in the NSA at the 95%

confidence level (shaded contour).

A positive improvement is generated by the additional observations to the skill of the model at forecasting ramp events (middle panel of

Figure 1), staying positive for all forecast hours. Averaging the NSA results over the first nine forecast hours, for all six data denial periods, and

for the three ramp identification methods, we get a 7% improvement generated by assimilating the additional WFIP observations, which is even

higher than the 6% found at only forecast hour 1 in the bulk RMSE of power forecast.6 This means that the additional information is at least as

beneficial to the model at forecasting rapid changes in wind speed as it is for improving the general forecast of hub‐height winds.
FIGURE 1 NSA results averaged over the six data denial periods and three ramp identification methods. Upper panel: Skill of the RAP model at
forecasting ramp events as a function of the forecast hour (blue line for Control Runs and red line for Experimental Runs). Middle panel:
Percentage improvement of the Experimental over the Control Run as a function of the forecast hour. Lower panel: difference in skill between the
Control and Experimental Runs. Shaded area represents the 95% confidence interval defined as (±1.96σ/√ˉn) [Colour figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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We also ran the RT&M looking separately at the skill of the RAP model at forecasting up‐ramps and down‐ramps. In both cases, the additional

instrumentation improves the skill, as highlighted in Figure 2. Again, the skill is positive over all forecast hours, slightly decreasing with the longer

forecast hours, but in both cases the improvement generated by the additional observations is evident in the lower panel of Figure 2. We also

notice that both the skill of the Control and Experimental Runs are better at forecasting up‐ramps (green lines in the upper panel of Figure 2, with

larger values for the skill) versus down‐ramps (purple lines in the upper panel of Figure 2, with smaller values for the skill). This behavior is

consistent with our findings in the SSA (not shown).
4.2 | South Study Area

The SSA results are less compelling when compared with the NSA, as can be seen in Figure 3, in agreement with the results for regular statistical

metrics.6 The skill of both Control and Experimental Runs is again positive for all forecast hours (upper panel of Figure 3), slightly decreasing with

the longer forecast hours, and its value is comparable with the skill in the NSA (upper panel of Figure 1). The improvement due to assimilation of

the WFIP observations, although mostly positive through forecast hour 14 (middle panel of Figure 3), is not as good as in the NSA. When we

average the SSA results over the first nine forecast hours, for all six data denial periods, and for the three ramp identification methods, we get

a 2.2% improvement in the ramp skill score generated by assimilation of the additional WFIP observations. The difference in skill of Experimental

and Control runs is only statistically significant for forecast hours 0, 2, 3, and 6 at the 95% confidence level.

One of the possible reasons for the smaller positive impact of the additional observations in the SSA is that, as we mentioned in Section 4,

fewer WFIP instruments were deployed in the SSA, fewer tall towers were available, and both were less evenly distributed over the domain,

compared with the NSA. It is also possible that the weather responsible for generating the ramp events in the SSA occurred on smaller spatial

scales (eg, convective outflow boundaries), making it more challenging for their structure to be accurately assimilated into the model. In

Figure 4, we show the position of the towers utilized in this study to assess the skill of the RAP model at forecasting ramp events, relative to

the additional WFIP instrumentation. Because the tower data, as well as their position, are a proprietary information, Figure 4 shows only the

outline of the tower locations.

We can see that the area where the 134 tall towers are located in the NSA (90% inside the cyan circle in Figure 4, left map) is better centered

around the area where the additional instruments were deployed (nine WPR denoted by the black triangles, and five sodars denoted by the red
FIGURE 2 As in upper and middle panel of Figure 1, but for the up‐ramp and down‐ramp events separately. The skill of the RAP model at
forecasting up‐ramp events is shown in green, down‐ramp events—in purple (dashed lines in the upper panel are relative to Control Runs and
solid lines are relative to Experimental Runs) [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


FIGURE 3 As in Figure 1, but for the SSA [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 4 Position of the towers utilized in this study relative to the additional instrumentation deployed for WFIP. Left map: NSA with the cyan
circle representing the area where 90% of towers are located. Right map: SSA, with the magenta circle representing the area where 80% of towers
in Upper SSA are located and the yellow circle representing the area where all the towers in Lower SSA are located. Triangles showWPR locations,
and asterisks show sodars locations [Colour figure can be viewed at wileyonlinelibrary.com]
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asterisks). For the SSA (Figure 4, right map), we had two sets of tall towers, the Upper SSA Towers and the Lower SSA Towers, whose locations

were approximately inside the magenta (80%) and yellow circles (100%), respectively. While the 34 towers in Lower SSA are better centered on

the area where the additional instruments were deployed (three WPRs and seven sodars), the 15 towers in Upper SSA are largely to the north,

making it possible that in some cases they might miss the benefit of the additional instrumentations.

Examining the six data denial periods separately, we found that the largest difference in the improvement due to the additional observations

between the Upper SSA Towers and the Lower SSA Towers occurred for the 7 to 15 January 2012, data denial period. This is clear from Figure 5,

where we present the improvement of the Experimental over the Control Run computed for both sets of towers (Upper and Lower SSA combined,

upper left panel), improvement computed only over the Upper SSA dataset (central left panel), and improvement computed over the Lower SSA

dataset (lower left panel). We see that the improvement is much more evident for the Lower SSA dataset compared with the Upper SSA dataset.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


FIGURE 5 SSA: Left side: Percentage improvement of the Experimental over the Control Run for the average of three ramp identification
methods as a function of the forecast hour for the 7 January to 15 January 2012 data denial period. Upper‐left panel: Results for the entire
SSA tower dataset. Central‐left panel: Results for the Upper SSA dataset. Lower‐left panel: Results for the Lower SSA dataset. Right side:
Predominant wind direction at the Upper SSA and at the Lower SSA, respectively [Colour figure can be viewed at wileyonlinelibrary.com]
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For this data denial period, the improvement in the Upper SSA, averaged over the first nine forecast hours and the three ramp identification

methods, is basically neutral (0.5%, from central panel of Figure 5), while it is largely positive in the Lower SSA (9.3%, from lower left panel of

Figure 5).

The reason for this difference in the impact of the additional WFIP observations during the 7 to 15 January 2012 data denial period can be

traced to the predominant wind directions in the Upper SSA and in the Lower SSA (right side of Figure 5). Here, we observe a predominantly

northerly direction at the location of the Upper SSA Towers, and predominantly northerly and westerly wind directions at the location of the

Lower SSA Towers. The towers in Lower SSA, which are located approximately in the yellow circle in the right map of Figure 4, are downwind

to the additional instruments and can benefit more from the assimilation of these observations. On the other hand, the Upper SSA Towers, which

are located approximately in the magenta circle in the right map of Figure 4, do not see any benefit as they are upwind of the additional WFIP

instruments.

The next step of the analysis consisted in investigating the predominant wind direction during all the data denial experiments at the location of

the two sets of SSA Towers. We selected the data denial periods with a clear predominant wind direction from which we could classify the Upper

and Lower SSA as being upwind or downwind of the additional instruments. The selected data denial periods are: 7 to 15 January 2012, 14 to 25

April 2012, 9 to 18 June 2012, and 30 November to 6 December 2012, and their corresponding wind roses in the range between 55 and 90 m are

presented in Figure 6, for the entire SSA. During the other two data denial periods, there was a less well‐defined predominant wind direction

making it difficult to classify the Upper and Lower SSA as being clearly upwind or downwind, and therefore we excluded them from this analysis.

We found that when the evaluation region has fewer additional upstream observations, the improvement is smaller. Thus, for the Upper SSA, a

predominantly northerly wind direction (observed in Figures 6A‐D for the 7 to 15 January 2012 and 30 November to 6 December 2011 data

http://wileyonlinelibrary.com


FIGURE 6 SSA: Predominant wind direction for the following data denial periods in the entire SSA: A, 7 to 15 January 2012, B, 14 to 25 April
2012, C, 9 to 18 June 2012, and D, 30 Nov to 6 December 2012 [Colour figure can be viewed at wileyonlinelibrary.com]
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denial experiments), and for the Lower SSA, a predominantly southerly wind direction (observed in Figures 6B‐C for the 14 to 25 April 2012 and 9

to 18 June 2012 data denial experiments) produce only a neutral impact (−0.7% improvement rate averaged over the first nine forecast hours) due

to the additional WFIP observations. In contrast, for the Upper SSA, a predominant southerly wind direction, and for the Lower SSA, a northerly

direction produced a larger positive impact from assimilation of the additional WFIP observations, with a 3.5% improvement over the first nine

forecast hours. This highlights the importance of the strategic positioning of additional instrumentation when used for data assimilation relative

to the area of desired improvement.
4.3 | Impact of different observations on the results

In this section, we assess the relative impact of the data assimilation for the remote sensing data alone, for the in situ data alone, and for the two

combined, using the RT&M on the 13 to 20 October 2011 and the 7 to 15 January 2012 data denial periods. Although a heavily instrumented

experiment such as WFIP provides a unique data set, the intent here is to provide information on the relative value of the different instrumenta-

tion types should either remote sensing or in situ observations become routinely available in the future. Results averaged over the 13 to 20 Octo-

ber 2011 and the 7 to 15 January 2012 data denial periods and over the NSA and the SSA are presented in Figure 7. The percent improvement of

the skill of RAP simulations at forecasting ramp events is shown when assimilating the combined WFIP remote sensors and in situ instruments

(black bars), when assimilating the WFIP remote sensor observations (green bars), and when assimilating the WFIP in situ observations (magenta

bars). Similar to what was found by Wilczak et al,9 the impact due to the assimilation of additional in situ observations has a significant initial

impact that diminishes rapidly over several hours. In comparison, assimilation of the less numerous remote sensing observations has a smaller ini-

tial impact but remains positive for a longer forecast lead times. The longer duration of the positive impact is likely due to the remote sensors

observing a deeper layer of the atmosphere. The sum of the improvements of the in situ and remote sensing data assimilated separately (magenta

plus green bars) is generally close to, but different than, that when the data are assimilated together.

http://wileyonlinelibrary.com


FIGURE 7 Skill percent improvement for
RAP simulations that assimilate various
combinations of the WFIP data, averaged for
the 13 to 20 October 2011 and the 7 to 15
January 2012 data denial periods. The black

bars are percent improvements due to the
assimilation of the combined WFIP remote
sensors and in situ instruments; the green bars
show the impact of assimilating only the
remote sensor observations; and the magenta
bars show the impact of assimilating only the
in situ observations. The green and magenta
bars are incremental [Colour figure can be
viewed at wileyonlinelibrary.com]
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5 | SUMMARY AND CONCLUSIONS

In this study, we presented the results of the RT&M developed for the first WFIP at measuring the skill of the NOAA/ESRL RAP model at fore-

casting wind ramp events. WFIP took place in two different areas of the United States, with a different number of additional observations

deployed for each area. The RT&M was applied to a set of six data denial experiments during which the RAP model was run first assimilating only

the conventional observations (Control Run), and later assimilating both the conventional and the additional observations from the instruments

deployed for WFIP (Experimental Run).

Our main results are as follows:

• The skill of RAP model at forecasting ramp events in both the Control and Experimental Runs is positive for all forecast hours, slightly decreas-

ing with the longer forecast hours. This behavior is consistent among the three different ramp identification methods and is true for both the

NSA and the SSA; however, the statistical significance of the improvement is more robust in the NSA.

• While we found a positive skill for the RAP model at forecasting ramp events for both of the Control and Experimental Runs, we found that the

skill is higher at forecasting up‐ramp events, compared to down‐ramp events, for both the NSA and the SSA.

• The NSA and the SSA showed different results in terms of percentage improvement of the Experimental Run over the Control Run, with the

impact of the additional WFIP instruments being more significant in the NSA (7%, averaged over the six data denial periods, first nine forecast

hours) than in the SSA (2.2%).

• Factors that reduce the improvement in model skill in the SSA are the smaller number of additional observations compared to the NSA and the

position of many of the towers used for verification relative to the WFIP remote sensing instruments. To this end, we found that the improve-

ment from the additional instruments is positive when the verification towers are located downwind from the assimilated instruments, and it is

neutral when the verification towers are upwind. This emphasizes the importance of the strategic positioning of instrumentation, particularly

when the assimilation of the data is meant to benefit the wind energy industry.

• The RT&M was applied to a subset of two data denial experiments to measure the relative impact of assimilating separately remote sensing

observations versus in situ observations. While assimilation of additional in situ observations had a significant initial impact that diminished

rapidly after several hours, assimilation of the remote sensing observations had a smaller initial impact but remained positive for longer forecast

horizon times.
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